Extensions 1→N→G→Q→1 with N=C8xD7 and Q=C22

Direct product G=NxQ with N=C8xD7 and Q=C22
dρLabelID
D7xC22xC8224D7xC2^2xC8448,1189

Semidirect products G=N:Q with N=C8xD7 and Q=C22
extensionφ:Q→Out NdρLabelID
(C8xD7):1C22 = D7xC8:C22φ: C22/C1C22 ⊆ Out C8xD7568+(C8xD7):1C2^2448,1225
(C8xD7):2C22 = SD16:D14φ: C22/C1C22 ⊆ Out C8xD71128-(C8xD7):2C2^2448,1226
(C8xD7):3C22 = D8:5D14φ: C22/C1C22 ⊆ Out C8xD71128+(C8xD7):3C2^2448,1227
(C8xD7):4C22 = D8:6D14φ: C22/C1C22 ⊆ Out C8xD71128-(C8xD7):4C2^2448,1228
(C8xD7):5C22 = D56:C22φ: C22/C1C22 ⊆ Out C8xD71128+(C8xD7):5C2^2448,1230
(C8xD7):6C22 = C56.C23φ: C22/C1C22 ⊆ Out C8xD71128+(C8xD7):6C2^2448,1231
(C8xD7):7C22 = D8:13D14φ: C22/C1C22 ⊆ Out C8xD71124(C8xD7):7C2^2448,1210
(C8xD7):8C22 = D8:15D14φ: C22/C1C22 ⊆ Out C8xD71124+(C8xD7):8C2^2448,1222
(C8xD7):9C22 = D28.29D4φ: C22/C1C22 ⊆ Out C8xD71124(C8xD7):9C2^2448,1215
(C8xD7):10C22 = D8:11D14φ: C22/C1C22 ⊆ Out C8xD71124(C8xD7):10C2^2448,1223
(C8xD7):11C22 = C28.70C24φ: C22/C1C22 ⊆ Out C8xD71124(C8xD7):11C2^2448,1198
(C8xD7):12C22 = C56.49C23φ: C22/C1C22 ⊆ Out C8xD71124(C8xD7):12C2^2448,1203
(C8xD7):13C22 = C2xD7xD8φ: C22/C2C2 ⊆ Out C8xD7112(C8xD7):13C2^2448,1207
(C8xD7):14C22 = C2xD8:3D7φ: C22/C2C2 ⊆ Out C8xD7224(C8xD7):14C2^2448,1209
(C8xD7):15C22 = C2xQ8.D14φ: C22/C2C2 ⊆ Out C8xD7224(C8xD7):15C2^2448,1218
(C8xD7):16C22 = D7xC4oD8φ: C22/C2C2 ⊆ Out C8xD71124(C8xD7):16C2^2448,1220
(C8xD7):17C22 = C2xD7xSD16φ: C22/C2C2 ⊆ Out C8xD7112(C8xD7):17C2^2448,1211
(C8xD7):18C22 = C2xSD16:3D7φ: C22/C2C2 ⊆ Out C8xD7224(C8xD7):18C2^2448,1214
(C8xD7):19C22 = C2xD28.2C4φ: C22/C2C2 ⊆ Out C8xD7224(C8xD7):19C2^2448,1191
(C8xD7):20C22 = D7xC8oD4φ: C22/C2C2 ⊆ Out C8xD71124(C8xD7):20C2^2448,1202
(C8xD7):21C22 = C2xD7xM4(2)φ: C22/C2C2 ⊆ Out C8xD7112(C8xD7):21C2^2448,1196
(C8xD7):22C22 = C2xD28.C4φ: C22/C2C2 ⊆ Out C8xD7224(C8xD7):22C2^2448,1197

Non-split extensions G=N.Q with N=C8xD7 and Q=C22
extensionφ:Q→Out NdρLabelID
(C8xD7).1C22 = D7xC8.C22φ: C22/C1C22 ⊆ Out C8xD71128-(C8xD7).1C2^2448,1229
(C8xD7).2C22 = D28.44D4φ: C22/C1C22 ⊆ Out C8xD72248-(C8xD7).2C2^2448,1232
(C8xD7).3C22 = D8:D14φ: C22/C1C22 ⊆ Out C8xD71124(C8xD7).3C2^2448,445
(C8xD7).4C22 = D112:C2φ: C22/C1C22 ⊆ Out C8xD71124+(C8xD7).4C2^2448,448
(C8xD7).5C22 = SD32:D7φ: C22/C1C22 ⊆ Out C8xD72244-(C8xD7).5C2^2448,449
(C8xD7).6C22 = Q32:D7φ: C22/C1C22 ⊆ Out C8xD72244(C8xD7).6C2^2448,452
(C8xD7).7C22 = D28.30D4φ: C22/C1C22 ⊆ Out C8xD72244(C8xD7).7C2^2448,1219
(C8xD7).8C22 = D8.10D14φ: C22/C1C22 ⊆ Out C8xD72244-(C8xD7).8C2^2448,1224
(C8xD7).9C22 = D7xD16φ: C22/C2C2 ⊆ Out C8xD71124+(C8xD7).9C2^2448,444
(C8xD7).10C22 = D16:3D7φ: C22/C2C2 ⊆ Out C8xD72244-(C8xD7).10C2^2448,446
(C8xD7).11C22 = D7xSD32φ: C22/C2C2 ⊆ Out C8xD71124(C8xD7).11C2^2448,447
(C8xD7).12C22 = SD32:3D7φ: C22/C2C2 ⊆ Out C8xD72244(C8xD7).12C2^2448,450
(C8xD7).13C22 = D7xQ32φ: C22/C2C2 ⊆ Out C8xD72244-(C8xD7).13C2^2448,451
(C8xD7).14C22 = Q32:3D7φ: C22/C2C2 ⊆ Out C8xD72244+(C8xD7).14C2^2448,453
(C8xD7).15C22 = C2xD7xQ16φ: C22/C2C2 ⊆ Out C8xD7224(C8xD7).15C2^2448,1216
(C8xD7).16C22 = C2xC16:D7φ: C22/C2C2 ⊆ Out C8xD7224(C8xD7).16C2^2448,434
(C8xD7).17C22 = D28.4C8φ: C22/C2C2 ⊆ Out C8xD72242(C8xD7).17C2^2448,435
(C8xD7).18C22 = D7xM5(2)φ: C22/C2C2 ⊆ Out C8xD71124(C8xD7).18C2^2448,440
(C8xD7).19C22 = C16.12D14φ: C22/C2C2 ⊆ Out C8xD72244(C8xD7).19C2^2448,441
(C8xD7).20C22 = D7xC2xC16φ: trivial image224(C8xD7).20C2^2448,433

׿
x
:
Z
F
o
wr
Q
<